Polar curve r proportional to theta

By Martin McBride, 2020-09-18
Tags: standard curves
Categories: polar coordinates


Here is a polar function where $r$ is proportional to $\theta$.

$$r = \theta$$

Describes a curve where $r$ is constant for any angle $\theta$, in this case 3. The curve includes all the points that are a distance of exactly 3 from the origin. This curve, of course, is a circle of radius 3:

This animation shows how the curve is plotted as $\theta$ moves from 0 to $2\pi$:

Scaling the curve

In general the function:

$$r = a \theta$$

where $a$ is a non-negative constant, describes a spiral curve of that is similar to the curve above (ie it is the same shape, but scaled by $a$). Here are the curves created for $a = 1$ (red), $a = 1/2$ (green), and $a = 1/4$ (blue):

The curve will cross the x-axis at 0, $-a\pi$ and $2 a\pi$. It will cross the y-axis at $a \frac{\pi}{2}$ and $-3 a \frac{\pi}{2}$.

See also



Join the GraphicMaths Newletter

Sign up using this form to receive an email when new content is added:

Popular tags

angle area cartesian equation chord circle combinations complex polygon cosh cosine cosine rule cube decagon diagonal directrix dodecagon ellipse equilateral triangle exponential exterior angle focus hendecagon heptagon hexagon horizontal hyperbola hyperbolic function interior angle inverse hyperbolic function irregular polygon isosceles trapezium isosceles triangle kite locus major axis minor axis nonagon normal octagon parabola parallelogram parametric equation pentagon perimeter permutations power quadrilateral radius rectangle regular polygon rhombus root sine rule sinh sloping lines solving equations solving triangles square standard curves star polygon straight line graphs symmetry tangent tanh transformations trapezium triangle vertical