Polar curve constant r

By Martin McBride, 2020-09-18
Tags: standard curves
Categories: polar coordinates


Here is an example of a polar function of constant $r$.

$$r = 3$$

This function describes a curve where $r$ is constant for any angle $\theta$, in this case 3. The curve represents the locus all the points that are a distance of exactly 3 from the origin. This curve, of course, is a circle of radius 3:

This animation shows how the curve is plotted as $\theta$ moves from 0 to $2\pi$:

Varying the radius

In general the function:

$$r = n$$

where $n$ is a non-negative constant, describes a circle of radius $n$. Here are the circles created for $n = 3$ (red), $n = 2$ (green), and $n = 1$ (blue):

Cartesian equation

We can convert the polar equation into a Cartesian equation using the identity:

$$r^2 = x^2 + y^2$$

Substituting for $r$ in the equation above gives:

$$x^2 + y^2 = n^2$$

which is the Cartesian equation for a circle of radius $n$, centred on the origin.

See also



Join the GraphicMaths Newletter

Sign up using this form to receive an email when new content is added:

Popular tags

adder adjacency matrix alu and gate angle area argand diagram binary maths cartesian equation chain rule chord circle cofactor combinations complex modulus complex polygon complex power complex root cosh cosine cosine rule cpu cube decagon demorgans law derivative determinant diagonal directrix dodecagon eigenvalue eigenvector ellipse equilateral triangle euler eulers formula exponent exponential exterior angle first principles flip-flop focus gabriels horn gradient graph hendecagon heptagon hexagon horizontal hyperbola hyperbolic function hyperbolic functions infinity integration by parts integration by substitution interior angle inverse hyperbolic function inverse matrix irrational irregular polygon isosceles trapezium isosceles triangle kite koch curve l system line integral locus maclaurin series major axis matrix matrix algebra mean minor axis nand gate newton raphson method nonagon nor gate normal normal distribution not gate octagon or gate parabola parallelogram parametric equation pentagon perimeter permutations polar coordinates polynomial power probability probability distribution product rule proof pythagoras proof quadrilateral radians radius rectangle regular polygon rhombus root sech set set-reset flip-flop sine sine rule sinh sloping lines solving equations solving triangles square standard curves standard deviation star polygon statistics straight line graphs surface of revolution symmetry tangent tanh transformation transformations trapezium triangle turtle graphics variance vertical volume of revolution xnor gate xor gate